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Abstract

Computational modeling in psychiatry has  generally followed from efforts to under-
stand cognitive processes (McClelland and Rumelhart 1986) or the nervous system 
(Hodgkin and Huxley 1952). This stands to reason: psychiatric disorders are disorders 
of thought and central nervous system activity. Although there are few contributions 
to psychiatry from probability theorists and engineers (Shewhart 1938; Miner 1945; 
Lusser 1958), the tools developed for quality control of metal fatigue and failed rockets 
may point to a useful approach for thinking about mental illness. This chapter argues 
that the computational science of collapse, which describes the manner and likelihood 
of failures in complex systems, provides a framework in which to use computational 
modeling for relating mechanisms to behavioral outcomes. This science, known as reli-
ability engineering, is a branch of applied probability theory that has now been used for 
almost a century to help understand and predict how inorganic, complex systems break 
down. The idea of a  fault tree analysis is introduced, a tool developed in reliability 
engineering which may be able to incorporate and provide a broader structure for more 
traditional computational models. Finally, Some of the current challenges of psychiatric 
classifi cation are unpacked, and discussion follows on how this framework might be 
adapted to provide a unifying framework for classifi cation and etiology.

Toward a Reliability Engineering Framework 
for the Central Nervous System

The reliability engineering framework provides a fresh perspective on the way 
in which we ask questions of, and report, our data. Historically, reliability en-
gineering developed over the twentieth century as mechanical devices became 
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increasingly complicated. In the 1920s, for example, Bell Labs faced the prob-
lem that many of the telephone amplifi ers, which they produced, failed after 
being buried underground. To address this, Walter A. Shewhart pioneered the 
fi eld of  statistical quality control, bringing together the fi elds of  probability 
theory and electrical engineering. In the 1960s, at the height of the Cold War, 
the same company was employed to use this approach to address problems in 
missile launch control systems. A principle of quality control engineering is 
that the reliability of an entire system declines as the number of interacting 
components increases (Lusser 1958). A careful description of the various ways 
in which interacting components could lead to a system failure highlighted 
weak points in the device and resulted in fault tree analysis (FTA).

Fault Tree Analysis on the Brain

FTA is a deductive failure analysis; the fault tree identifi es how faults of indi-
vidual components interact with other components resulting in overall failure.1
To generate a fault tree, the different components of the device must be identi-
fi ed, as well as a description of how these component failures—called faults—
interact and combine into failure modes. A fault occurs when a component is 
unable to perform its required function, such as a mutation in an ion channel 
or a neurotransmitter receptor that critically impairs synaptic communication. 
In combination, such faults can cause a cascade resulting in a general failure 
mode, such as a loss of information-processing capacity in cortical networks. 
In psychiatry, a symptomatic expression of this cortical network failure mode 
might be an impairment in some aspect of cognition,  emotion, or behavior. 
Consistent with other authors (e.g., Redish 2013), we will propose that neu-
ropsychiatric syndromes may be thought of as failure modes of the central 
nervous system.

Fortunately, the failure of a single component rarely results in a general sys-
tem failure due to built-in redundancy and plasticity of the brain; this enables 
most people with many forms of insult to function normally in the world. In 
this way, a FTA makes affordances for causes that are neither necessary nor 
suffi cient for dysfunction in and of themselves. To generate a fault tree, one 
identifi es the different components that contribute to the failure. Consider a 
simple circuit with a main bulb and a back-up bulb, a power generator and 
a back-up battery, and a controller switch. The FTA in Figure 9.1a illustrates 

1 FTA is only one of a number of tools that may fi nd application for understanding neuroscien-
tifi c questions. Strictly speaking, FTA is a deductive, top-down method for organizing ideas, 
recording probabilities, and evaluating likelihoods, whereas  failure mode and effects analysis 
is a bottom-up approach that focuses on how a fault in a single component propagates through 
a system. Together these two analyses constitute a failure mode effects summary, which is 
commonly done after, for example, airplane crashes. Both approaches may have potential for 
neuroscience, and at times the best tool for a question may be adapted from still elsewhere in 
reliability engineering’s armamentarium.
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the likelihood of a failure mode can additionally be calculated (or the range of 
likelihoods, using additional  Markov chain expansions in which a distribution 
of possible outcomes is sampled many times).

Figure 9.1b is an example of an FTA reconceptualized from a biophysi-
cally realistic computational model of theta and gamma oscillation genera-
tion. In this case, Neymotin et al. (2011) looked at the functioning of differ-
ent hippocampal cell types to examine the impact of  ketamine administration. 
Ketamine, an NMDAR antagonist, is known to induce a schizomimetic state 
that has been traced to a contemporaneous decrease in theta and an increase in 
gamma brain waves, particularly in the  hippocampus. The researchers devel-
oped a  Hodgkin–Huxley style network model of hippocampal neurons consist-
ing of 200 each of basket and oriens-lacunosum moleculare (OLM) interneu-
rons and 800 pyramidal cells. All these cell types had  NMDA receptors on the 
soma, with pyramidal cells additionally having them on apical dendrites. The 
models showed that blocking all NMDA receptors decreased both theta and 
gamma, inconsistent with experimental fi ndings at schizomimetic doses. They 
reasoned that differences in sensitivity to ketamine of NMDA receptors on the 
different cell types must be the source of these preanesthetic effects. Therefore, 
they independently manipulated four types of insults—blocking NMDA recep-
tors on somas of (a) basket, (b) OLM, (c) pyramidal neurons, and (d) apical 
dendrites of pyramidal neurons. This resulted in 16 binary combinations: 2 
(normal/off) raised to the 4th (types of insults). The model found that pyra-
midal somatic NMDA receptors were largely irrelevant to theta and gamma 
power, whereas turning down pyramidal apical receptors alone was enough 
to decrease both theta and gamma power. In fact, the only condition in which 
they observed decreased theta and increased gamma was when OLM NMDA 
receptors were off, while the basket interneurons and apical pyramidal NMDA 
receptors remained functional. This result has been translated into the Boolean 
logic illustrated in Figure 9.1b.

The point may go without saying, but the purpose of the examples in 
Figure 9.1 is to illustrate the mechanisms underlying FTA and make explicit 
the parallels between mechanical and biological circuits. Several elements are 
omitted from these examples for the purpose of simplicity. First, the power of 
invoking probability theory is not illustrated. The probability of the co-occur-
rence of two independent events (pA AND pB = pA*pB) or the occurrence of 
either of two such events (pA OR pB = pA + pB – (pA*pB)) are familiar from 
introductory statistics courses. The impact of NOT, or inhibition, is straight-
forward. By simple extension, the inclusion of additional forms of logic (X-
OR, 3 OUT OF 4, etc.) can also be readily incorporated. Furthermore, the 
effect of earlier event probabilities can then propagate through the FTA to 
examine the rate at which a general failure mode should occur. Second, many 
features of biological systems are not dichotomous and thus do not fall into 
simple categories. In such an event, classical  probability theory can be aug-
mented with a Markov chain and other methods, which involve resampling 

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



Can Reliability Engineering Shed Light on Mental Illness? 157

probability distributions.2 This complicates the statistics but allows more 
dimensional variations of these concepts to be captured. Third, the events 
within the system need not be all within the organism. For example, stressors 
or treatments from outside the system can be modeled as externally controlled 
variables and can thereby alter the outcome (the rate of a specifi c fault and 
therefore the rate of general failure modes).

With these considerations in place, we come closer to imagining how FTA 
might provide a way of thinking about neuropsychiatric diseases and how 
different risk factors and treatments might interact. In this regard, the reli-
ability-engineering framework is similar to other computational neuroscience 
approaches, insofar as the goal refl ects a dissatisfaction with the correlative 
relationships that undergird much of what is known about mental illness. Like 
other computational approaches, the tool refl ects specifi c causal hypotheses. 
Also, like other computational approaches, the tool risks becoming an arm-
chair exercise, unless it generates hypotheses that are testable, either in patients 
or  animal models. For example, the models can be generative—by pointing 
out domains and connections about which too little is known—and they can 
be tested and refi ned by assessing the extent to which known risks predict the 
characteristics of faults within a neural system and rates of failure modes (dis-
eases) within a population.

Reliability Engineering on the Brain

Why have not reliability-engineering approaches been embraced more in psy-
chiatry? One answer may be that biology in general, and the nervous system 
in particular, have failure rates and causes that are hard to quantify. The vast 
majority of the literature involving reliability engineering in the biological and 
medical sciences involves the traditional reliability of various medical devic-
es. In the brain, reliability-engineering approaches are most evident in those 
places where engineers have had to share space with neuroscientists, such as 
in the study and manufacture of computer–brain interfaces (e.g., Polikov et al. 
2005; Yousefi  et al. 2015).

While reliability engineers may not tread into neuroscientifi c territory, there 
is a useful precedent in the work of the psychologist and neuroscientist Robert 
 Glassman (1987). Glassman drew on Lusser’s work in missiles and rocketry 
to speculate that component faults and failure modes were likely evolutionary 
constraints that led to redundancy and parallel processing in the brain (Lusser 
1958).  Lusser’s law states that the reliability of components in series is equal to 
the product of the reliability of its component subsystems (an observation that 

2 Rather than a deterministic model, such simulation tools allow for probabilities to be assigned 
to several outcomes. For example, Markov chains examine a sequence of events using random 
draws to determine how the sequence proceeds. This then produces the distribution of prob-
abilities informed by the internal structure of the sequences.
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led Lusser in the 1950s to dismiss the possibility of reaching the Moon because 
of the complexity—and therefore the low reliability—of the rockets required). 
Building on the theorems underlying  Lusser’s observations,  Glassman derived 
the observation that the brain’s apparent series-parallel networking operations 
had evolved to overcome inevitable faults in particular neurons or neural sys-
tems over the course of a lifetime using built-in redundancies, such as large 
neural populations fi ring in concert. Glassman also saw in Lusser’s law the 
principles underlying  diaschisis, which is the alteration of functions in brain 
regions far removed from a damaged area. Diaschisis might then refl ect the 
brain’s manner for overcoming such failures such that at fi rst it is unable to 
produce the given behavior at all but, with recovery, it can again produce the 
given behavior only by accepting a lower level of precision (a higher fault rate) 
from some components.

We cannot speak to the extent that these ideas informed Glassman’s sub-
sequent work. It is clear that they did not lead a stampede of neuroscientists 
to seek out training in reliability engineering. However, in such matters, the 
selection of a target problem can make all the difference. In the next section we 
will try again, this time by applying the framework of FTA to the challenge of 
integrating  classifi cation and etiology in the study of mental disorders.

Comparing Frameworks for Classifi cation 
and  Etiology of Mental Disorders

Although testing, or even proposing, a formal FTA for a specifi c mental ill-
ness is beyond the scope of this chapter, we believe that it will be a use-
ful complement to other computational approaches in the future. Even in 
the absence of a realized FTA model, the reliability-engineering approach 
provides a framework that contrasts with the two frameworks for thinking 
about psychiatric and personality disorders currently prominent in the fi eld. 
Frameworks are the premises and concepts that tacitly guide our research. 
For example, the number of angels that can dance on the head of a pin is 
now a byword for a pointless debate, but it was once a subject of serious dis-
course; we have long since retired the framework that led to those arguments. 
Are there parts of our framework for studying psychiatric disorders similarly 
ready for retirement?

To address this issue we will unpack the two prominent frameworks in 
psychiatry, which we term the   neo-Kraepelinian and the  reverse-engineering 
frameworks, and then contrast them with the reliability-engineering frame-
work. In particular, we will examine how these frameworks affect the way 
in which we link the causes of a disorder to its symptoms. Since classifi -
cation and cause are so central to psychiatric research, these are domains 
where an incorrect framing of the questions could lead us hopelessly astray. 
We will argue that both the neo-Kraepelinian and the reverse-engineering 
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frameworks are misaligned with the nature of psychiatric disorders. Our aim 
will then be to use the tools of reliability engineering to make this discrep-
ancy more explicit.

The Neo-Kraepelinian Framework

The founder of modern psychiatry, Emil  Kraepelin (Kraepelin and Diefendorf 
1907; Kraepelin 1919), was the original proponent of the quasi-medical 
framework used most widely in psychiatry today. This framework came to 
prominence in the 1970s, supplanting the psychoanalytic framework used in 
the second edition of the  Diagnostic and Statistical Manual ( DSM-II). This 
neo-Kraepelinian framework posited distinct categories of illness that could 
be assigned to someone who had a suffi cient number of observable symptoms. 
The framework was codifi ed in the  Feighner criteria (Feighner et al. 1972), 
the  Research Diagnostic Criteria (RDC; Spitzer et al. 1975), and eventually 
the third edition of DSM ( DSM-III). These codes suggested that symptoms 
were useful for determining whether someone fulfi lled the necessary and suf-
fi cient conditions for diagnosis. However, it was also acceptable for patients 
to share a diagnosis without sharing any symptoms. It was hoped that a formal 
diagnostic framework would decrease idiosyncratic noise, increase the reli-
ability of diagnoses, and harmonize practice across laboratories and clinics (for 
a critique of these aspirations, see Markon et al. 2011). This served to reify the 
search for natural categories with distinct etiological and pathophysiological 
characteristics (Hyman 2010). Within this framework, theories about how the 
neural functions of, for example, schizophrenia patients may be distinct from 
the neural functions of depressed, alcoholic, or obsessive-compulsive patients 
were immediately salient and substantive.

Forty years on, the premises and concepts of the neo-Kraepelinian frame-
work are hampering progress toward the grand challenges of psychiatric re-
search (Persons 1986; Van Os et al. 1999; Krueger and MacDonald 2005; 
Markon et al. 2005; Hyman 2010). There is increasing evidence that upstream 
genetic, cellular, and neural system impairments are shared across distinct 
disorders, even between categorically distinct disorders. To follow up on our 
example,  schizophrenia has at times been thought of as a categorically dis-
tinct psychiatric disorder. It is somewhat surprising, then, that 50% of people 
with schizophrenia also fulfi ll criteria for comorbid  substance abuse at some 
point, and 50% fulfi ll criteria for  depression (Buckley et al. 2009). People with 
schizophrenia are also at a 12-fold greater risk for  obsessive-compulsive dis-
order (Pokos and Castle 2006), whereas those with obsessive-compulsive dis-
order are at a fourfold greater  risk for schizophrenia (Tien and Eaton 1992). 
The levels of  comorbidity between other mental disorders can be equally as 
high. In any case, psychopharmacology and  psychotherapy frequently use the 
same medications and techniques in practice across different diagnoses (for ad-
ditional critique, see MacDonald 2013). At some point, the neo-Kraepelinian 
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medical framework became more useful to insurance adjusters and lawyers 
than to patients, clinicians, or even researchers. In the words of Thomas Insel, 
director of the National Institute of Mental Health (NIMH) when DSM-5 was 
released: “Patients with mental disorders deserve better.”3 For these reasons, 
some scientists are moving away from the neo-Kraepelinian framework to-
ward something new, which we refer to as informal reverse engineering.

The Informal Reverse-Engineering Framework

 Reverse  engineering involves analyzing a complex system related to a func-
tion to determine the mechanisms underlying that function. This framework 
is already implicit in much neuroscience research, while NIMH’s  Research 
Domain Criteria (RDoC) perspective (explicitly named in recognition of the 
 RDC framework it replaces) is the most codifi ed version at this time. “The 
mandate for RDoC is to consider psychopathology in terms of maladaptive 
extremes along a continuum of normal functioning, to promote a translational 
emphasis” (Ford et al. 2014:S296). At the core of RDoC is a matrix with rows 
consisting of functional dimensions organized into fi ve broad categories (posi-
tive valence systems, negative valence systems, cognition, social processes, 
and arousal). The columns of the matrix are levels, or units, of analysis rang-
ing downward to genes and upward to behavior and symptoms.4 Thus, the 
framework strives to organize extant knowledge about a multitude of cognitive 
and affective processes with research fi ndings about brain networks, neurons, 
neurotransmitters, proteins, and genes (Insel and Cuthbert 2009; Stanislow et 
al. 2010; Cuthbert and Kozak 2013; Ford et al. 2014). The principle motivat-
ing RDoC is that patients who are sorted according to some shared functional 
defi cits (e.g., in  working memory,  attention,  executive control) will have more 
in common in terms of brain functioning than do patients placed in the same 
diagnostic groups according to neo-Kraepelinian schemes. The hope is that 
this new framework should facilitate the discovery of the underlying neural 
mechanisms that cause neuropsychiatric disease. RDoC is based on several 
reasonable, but untested, assumptions:

• A focus on functional defi cits will direct research toward causal bio-
logical mechanisms more rapidly than a focus on clinical symptoms.

• Patients grouped based on functional defi cits will be more homogenous 
with respect to underlying biological mechanisms than grouping based 
on clinical symptoms.

3 April 2013 blog post, available at http://www.nimh.nih.gov/about/director/index.shtml. For 
partial retraction, see http://www.nimh.nih.gov/news/science-news/2013/dsm-5-and-rdoc-
shared-interests.shtml (accessed July 7, 2016).

4 http://www.nimh.nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtml 
(accessed July 8, 2016).
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• Clinical symptoms and functional defi cits derive from a common set 
of biological mechanisms, so that studying one will provide insight 
into the other (which is necessary if treatments that improve functional 
defi cits are also to improve clinical symptoms).

If patients with similar functional defi cits do not end up sharing more in terms 
of a common set of underlying neurobiological defi cits, it would suggest that 
either there are no  meaningful categories of neuropsychiatric disease with 
unique neural signatures, or that new functional axes closer to neural func-
tioning need to be identifi ed. In spite of the uncertainty of these propositions 
at this stage, it seems that shifting toward functional defi cits and away from 
clinical symptoms will enable a tighter link between biology and behavior in 
neuropsychiatric research. For this reason,  RDoC holds enormous potential for 
accelerating discovery.

We refer to the RDoC approach as an instance of “informal  reverse en-
gineering” in the present context because, although it seeks to identify the 
biological causes underlying behavioral defi cits in neuropsychiatric disease, 
the RDoC framework does not attempt to provide a quantitatively rigorous or 
unifying framework for achieving this. A potential limitation of the informal 
reverse engineering in general, and RDoC as a manifestation of it, is that 
by isolating psychological constructs from each other (rows in the RDoC 
grid), attention is drawn away from the sources of structure in psychopathol-
ogy. It is this structure of covariation in cognitive and affective dysfunctions 
within and across patients that initially led to the delineation of diagnostic 
entities early in the twentieth century. Even when statistical relationships 
are discerned, it is not easy to append these into the cumulative science of 
mental illness. In particular, RDoC does not make affordances for how mul-
tiple causal factors interact, nor does it provide a basis for predicting how a 
complex set of interacting neural systems that collectively malfunction as a 
result of the disease will respond to interventions intended to normalize brain 
function. In short, it is not clear that RDoC in its current form will identify 
treatments. Alternatively, it is possible that with perfect knowledge, func-
tional defi cits in  working memory,  attention, or  executive control may turn 
out to result from diverse biological causes. Under such circumstances any 
new grouping (or dimension) would not reduce  heterogeneity within groups 
at all, which would limit its usefulness as well.

We argue for a more quantitatively rigorous framework that simultaneously 
affords an account of how causes that are neither necessary nor suffi cient in 
and of themselves can result in a disorder, and how within-diagnosis heteroge-
neity and between-diagnosis comorbidity arise. With that said, there are many 
components of reverse engineering, even informal reverse engineering, that 
are a salubrious and necessary part of any FTA of a biological system. First 
among these are computational models.
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Fault Tree Analysis Framework for Syndromes 
and Computational Models in Psychiatry

If  you don’t know where you’re going, you don’t have very much control over 
where you arrive. The framework offered by reliability engineering allows us 
to envision what a description of psychopathology might look like and pro-
vides a set of tools to move forward. This possibility goes beyond the classi-
fi cation of people into disease categories or the measurement of people along 
cognitive dimensions, and begins to reintegrate causes into our conceptualiza-
tion of mental disorder. Further, the framework provides a means for describ-
ing both how a single therapy might affect several different disorders and how 
different therapies can all reduce the same symptom.

As  is well established elsewhere in this volume, computational models are 
mathematical formalizations of hypotheses. As noted above from the work of 
Neymotin et al. (2011; see also Figure 9.1b), integrating computational model-
ing with FTA in the context of psychiatric disease allows us to relate different 
risk factors to disease pathophysiology forming the outcome of a model. Such 
computational models can enable a  mechanistic understanding of the linkages 
between faults that may occur in the tree; they can also relate mechanisms un-
derstood at one scale of the fault tree to outcomes at another scale.

The schematized illustration of FTA in Figure 9.2 demonstrates a number 
of properties of an expanded FTA framework that make it desirable for un-
derstanding the etiological and classifi cation problems in psychiatry. Levels 
of analysis are illustrated in a series of gray bands, and the relationships be-
tween those gray bands is explicitly illustrated with simple logic gates. Two 
symptoms (A and B) represent two failure modes of the system. The co-oc-
currence (or comorbidity) between them is shown to be the result of the rela-
tionships among four cognitive/affective processes. Because of the dual role 
played by cognitive/affective process C in the two symptoms, the likelihood 
of co-occurrence is greater than chance (and could be explicitly calculated and 
compared to empirical rates), depending on the presence of other processes. 
Cognitive/affective process C is not the only source of  comorbidity, as cell 
process B plays a role in three of the cognitive processes, rendering those, in 
turn, nonindependent.

Suppose symptoms A and B are symptoms of a given disorder. In a num-
ber of psychiatric disorders, two patients can share a diagnosis without shar-
ing symptoms. Similarly, each patient can in turn closely resemble someone 
who does not fulfi ll the criteria. How might this be explained by FTA? In our 
schematic, a patient with an impairment in cognitive/affective processes A, 
B, C, and D will express symptom A but not B; whereas another with impair-
ments in processes C and D will only show symptom B. This is troubling from 
a   neo-Kraepelinian  perspective, where a disease is recognized by fulfi lling a 
series of necessary and suffi cient conditions because they have a specifi c etiol-
ogy. On the other hand, a FTA framework provides a tool for thinking about 
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Honing the relationships present in the fault tree can proceed in parallel 
with, and in turn complement, the efforts of computational modeling to unpack 
the mechanisms across different levels of analysis. For example, genomic stud-
ies have identifi ed many mutations related to schizophrenia and depressive 
disorder, all of which have only weak correlations to the disorder. However, 
identifi cation of changes in the genetic code does not directly link the  etiology 
to the behavioral outcome, primarily because it is unclear how genetic muta-
tions that change the properties of an ion channel or neurotransmitter system 
change the function properties of neural circuits to alter how they process in-
formation. Computational models can be used to relate what we may know at 
the molecular and cellular scale to the observable changes in neural function, 
circuit dynamics, and ultimately behavior. For example,  Hodgkin–Huxley neu-
ronal models simulate ion channel and synaptic conductances to predict cellu-
lar dynamics. Channel mutations can be modeled by changing parameters and 
measuring the resulting changes in excitability and/or spiking patterns in arti-
fi cial neural networks. These networks can be trained to “perform” behavioral 
tasks (e.g., process stimuli, select between available behavioral responses) that 
measure specifi c cognitive impairment in patients. Therefore, these models are 
useful for linking changes at the protein scale to changes in neural function and 
behavior. At another scale,  mean-fi eld models simulate the average fi ring rates 
of populations of neurons in brain regions. These models can be used to relate 
changes in excitability or connection strengths to the emergence of  synchrony 
and population oscillations that may be measured in system-level  biomarkers 
such as changes in fMRI, EEG, and even to cognitive defi cits.

An advantage of computational models is that they can assess how pharma-
cological, electrical, or optogenetic therapies could potentially modulate neu-
ral dynamics in networks to normalize  information processing and behavior. 
By testing these predictions from the models, we are inherently testing our 
underlying hypothesis of the physiological mechanisms resulting in the disease 
state. Still, to be tractable, computational models necessarily focus on a small 
set of empirical observations and struggle to capture various syndromal and 
epidemiological aspects of psychiatry. For example, Voon et al. (2015) found 
that a bias toward  model-free learning was more prevalent in people with binge 
eating disorder,  methamphetamine  addiction, and  obsessive-compulsive disor-
der. Thus, diverse disorders of compulsivity are accompanied by an excessive 
tendency toward  model-free learning. While a compelling mechanistic account 
of compulsive symptoms, it does not yet account for an important complica-
tion: the low level of  comorbidity between these compulsivity disorders if they 
were indeed caused by a single fault. Thus, while the computation model is of 
itself mechanistic (and possibly correct), a full understanding of binge eating 
disorder, methamphetamine addiction, and obsessive-compulsive disorder will 
involve understanding why the same fault results in addiction, in one case, 
and obsessive-compulsive disorder, in another. Circumstances like this, where 
there is not a one-to-one mapping between a modeled fault and a particular 
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symptom, are likely to be the norm. In this regard, we see FTA and computa-
tional modeling as complementary. The extent to which the predictions made 
by any given model correspond to observed probabilities of various outcomes 
provides useful validation of both the FTA and the computational model.

A Reliability Engineering-Aligned Research Agenda

While FTA has many attractive features for helping to systematize the  etiology 
and  classifi cation of mental disorders, there are clear limitations to the applica-
tion. First, generating a fault tree that spans genes to diseases is an immense 
task. Is it practical to complete an FTA for any given disorder, or is this really 
just a framework in which to think about disease diagnosis? We propose that 
the FTA may be practical for relating some specifi c etiologies to outcomes. 
In this sense, it provides a new way to summarize information and structure 
reviews  of a given domain. While it may not yet be practical to generate a 
globally encompassing fault tree that relates all diseases into a single frame-
work (i.e., an FTA of the brain), there are statistical tools that make the task 
less daunting. For example,  probabilistic  graphical models are an increasing-
ly popular method for detecting nonlinear (including Boolean) relationships 
between observed variables (Praveen and Fröhlich 2013). Second, the FTA 
framework implies unidirectional causality: genes are responsible for cellular 
physiology, and physiology is responsible for behavior. Feedback loops are 
not, to our knowledge, accommodated in a simple way. Clearly, in biologi-
cal systems there is feedback between every level, and this feedback can be 
incorporated into computational models. While feedback is complicated for 
the proposed approach, steady-state effects of such circuits and fl uctuations in 
those steady states may be incorporated into expanded versions of FTA. Third, 
coupling between nodes within the FTA may be fi t to data to best describe 
general outcomes, but may not represent any particular patient’s connections. 
Therefore, an FTA alone may not be suffi cient to provide useful guidance for 
selecting a given patient’s therapy (cf. footnote 1 regarding failure mode and 
effects analysis, and  failure mode effects summaries, which may, in time, pro-
vide precisely this type of guidance). Fourth, strictly speaking, FTA builds 
toward a single general failure mode. However, one of the features that may 
prove particularly useful for biological systems, such as the brain, is the way in 
which two FTAs can overlap. Thus it will be necessary to expand these models 
to exploit more fully the ways in which shared causes of two or more failure 
modes can be illustrated and calculated.

At present, there are only fragmentary parts of fault trees for complex mental 
disorders. FTAs are assembled from data collected from very disparate sources 
to relate causal relationships between different elements at adjacent scales and 
correlational relationships between more distant elements. The adoption of 
the FTA framework, perhaps in concert with probabilistic graphical modeling 
as needed, could therefore play a useful role in directing future research, for 
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example, quantifying statistical relationships between key disease variables in 
existing datasets, and identifying high-value data to test computational models. 
There are some data sources that relate specifi c connections within the tree 
(e.g., genes to cell physiology, or cell physiology to network oscillations), but 
others relate scales that are not directly coupled (e.g., correlations between 
genes and disease prevalence). Mechanistic connections can be tested in com-
putational models and further validated in  animal models. These models can be 
used to identify the mechanisms or symptoms that relate the different compo-
nents of the genomics and physiology into a biometric. The goal is to generate 
a single model that both explains the direct mechanistic connections and is also 
consistent with the indirect correlations. This will involve going beyond the 
statistical probabilities and effect sizes to which we are accustomed.

We have brought some attention to a fi eld that has been working with quirks 
of nonbiological systems for almost a century. Many of the challenges to which 
this fi eld of reliability engineering has struggled have parallels with biological 
systems. One tool from reliability engineering, FTA, provides an overarching 
framework for thinking about how complex systems, such as the brain, can 
break down. The reliability engineers’ path that linked underground telephone 
amplifi ers to Moon-bound rockets was fi lled with happy and some not-so-hap-
py accidents. The path ahead for the computation of collapse may be much 
closer to home. We suggest that going on this journey begins with a mental 
shift, from the traditional medical   neo-Kraepelinian  framework to that of reli-
ability engineering.
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